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Abstract

The HadCRUT4 time series of 166 annual values of global average temperature was analysed
both deterministically and stochastically and the results compared. The deterministic model
comprised the sum of a linear trend and a multi-decadal oscillation fitted by ordinary least
squares regression. The stochastic model was an ARMA(1,2) model with a drift term included.
The deterministic model showed a linear trend of 0.5°C per century while the stochastic model
showed no significant drift. In both cases, the residuals were tested for self-correlation using
standard statistical tests. The residuals from the deterministic model were significantly self-
correlated whereas those from the stochastic model were not. We conclude that the stochastic
model was a much better fit to the data and that the apparent linear trend of the deterministic
model was spurious and a consequence of performing a regression in which time was the
explanatory variable.

Keywords
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Introduction

In recent decades, energy policy, both nationally and internationally, has been primarily
concerned with the reduction in carbon emissions from the combustion of fossil fuels. This
has arisen from a proliferation of theories of climate, encapsulated in complex numerical
models, which purport to relate global surface air temperature to the concentration of
carbon dioxide in the atmosphere. All this activity is based on a single empirical observation,
viz. that there has been a significant increase in global average temperature over the last
century and a half. Here we show that this observation is false and is based on an overly-
simplistic interpretation of the data.
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Discussion

In physics, there are a number of important dichotomies. These include the dichotomy
between relativistic and Newtonian mechanics, between quantum and classical field theories
and between linear and non-linear systems. There is a further dichotomy, equally important,
the dichotomy between deterministic and stochastic processes. It might be argued that this is
mere sophistry with little practical consequence but that is not so. Indeed, the conclusion of
this article that ‘the stochastic model was a much better fit to the [global average tempera-
ture] data’ indicates that systems which are as fundamentally stochastic as fluid dynamic
systems must be treated statistically lest spurious alarms and costly false positives result.

A deterministic process is a process for which, once initial conditions are known, all
future states of a system can be predicted. A stochastic process is a process for which,
given the initial conditions, futures states are not completely predetermined but are governed
by the laws of probability.

Any system describable in terms of analytic functions or differential equations alone is
deterministic. The interaction of solid objects with force fields and with one another are well
described by deterministic models. Celestial mechanics is an example.

Fluid dynamical systems are commonly dealt with deterministically using the Navier—
Stokes equations or variations thereof. In order to do this, it is commonly assumed that the
fluid involved is a ‘continuum’, i.e. it is everywhere continuous and differentiable and so is
deterministic, as when the Navier—Stokes equations are converted to the discrete form of
finite difference equations for the purpose of numerical modelling of fluids. Here Taylor’s
theorem is commonly used to make the transition to the discrete case, the continuum
assumption being implicit in this use of Taylor’s theorem.

It has been well known for more than a century that no real fluid is a true continuum. This
is demonstrated by the Brownian motion. The velocity field in any real fluid varies rapidly
and discontinuously in both time and space. It is not differentiable. Hence the use of
Taylor’s theorem in defining the finite difference equations of numerical models is not
justified. Instead, there is a probabilistic relationship between the state of a fluid and the
preceding state. Real fluids are stochastic not deterministic. Observed fluid dynamic phe-
nomena such as turbulence, vortex shedding and wave breaking are testament to the sto-
chastic nature of real fluids. Even at laboratory scales, the Navier—Stokes equations cannot
adequately describe the behaviour of fluids in high Reynold’s number regimes. Aspects of
these regimes which can be quantified are dependent on other methods such as dimensional
arguments, self-similarity and physical intuition. Kolmogorov’s turbulence spectrum is an
example.

If a system is deterministic, then its variables are all single-valued functions of time.
Experimental observations of dynamical variables are commonly displayed as functions of
time and a ‘line of best fit” or regression line fitted to the observations to display the trend or
rate of change with time. This is commonplace, something most researchers learned at
school.

However, there can be serious problems with this methodology when the system under
investigation is stochastic. Nelson and Kang1 demonstrated that, for certain stochastic
processes such as a ‘random walk’, the use of time as the explanatory variable can lead to
the appearance of a trend even though none was present in the original data. They report for
a random walk process: Regression of a random walk on time by least squares will produce R’
values of around .44 regardless of sample size when the variable has, in fact, no dependence
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whatever on time (zero drift). It follows that an observed trend obtained by regressing a
physical quantity on the time may or may not be real, depending on the deterministic or
stochastic nature of the system under investigation. Although not widely known outside the
field of Econometrics, the implications of this article cannot be overestimated. It seems to be
little known in the physical sciences.

Attempts to model global climate have hitherto depended on coupled ocean-atmosphere
general circulation models. Such models are deterministic because the Navier—Stokes equa-
tions of fluid dynamics on which they are based are, themselves, deterministic.

Hasselmann?® proposed a stochastic model of climate variability wherein slow changes in
climate are explained as the integral response to continuous random excitation by short
period ‘weather’ disturbances. Thus, intrinsic quantities such as temperature are the outcome
of the integration by natural processes of quasi-random, extrinsic quantities such as heat. As
a consequence, such measurements can be regarded as the outcome of a stochastic process
and can be expected to exhibit a power law spectrum with negative exponent due to such
integrating effects. The best known and simplest example of such a process is the ‘random
walk’ obtained when white noise is integrated or summed. It has a power law spectrum with
an index of —2.

Pelletier® has shown that variance spectrum of atmospheric temperature exhibits a variety
of power law relationships over a wide range of time scales from 2 years to 100,000 years, i.e.
over a given frequency scale:

S=Af" ()

where S is the variance density at frequency, f, and A4 and v are constants. Pelletier found
that v lay in the range —2.0 to —0.5 indicating a concentration of variance density at low
frequencies, i.e. random-walk-like behaviour.

In recent times, much has been made of the apparent rising trend in global average
temperature commonly attributed to rising greenhouse gas concentrations in the atmos-
phere. At issue is whether this trend is a real, deterministic trend or whether the observed
variations are merely the random outcome of a stochastic process.

The data

Two time series were downloaded for analysis. They were:

(1) The HadCRUT4 series of 1666 annual values from 1850 to 2015 inclusive were down-
loaded from http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/
on 12 April 2016.* There are a number of such global temperature data sets available,
e.g. those from GISS, NOAA and BEST. Statistically, they are almost identical.
HadCRUT4 was chosen because it was longer.

(2) A data set of proxy temperatures from isotope ratios in Greenland ice cores, the GISP2
Ice Core Temperature and Accumulation Data. These were downloaded from ftp://ftp.
ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_
accum_alley2000.txt on 20 April 2016.%° Like most ice core records, the data values were
sampled at unequal intervals of time. In order to convert them to a form suitable for
processing, the record was divided into 50-year intervals and the data averaged in each
interval to form a time series. Only the most recent 10,000 years of ice core data were
used, i.e. the data were all from the Holocene Epoch.


http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt
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A deterministic model

A deterministic model typically comprises a linear function of one or more functions of the
explanatory variable plus a random element. In this case, the explanatory variable is the
time. The parameters are estimated by minimizing the sum of squares of the differences
between an estimate and the true values of the sample, the residuals. This is the ordinary
least squares (OLS) method. It is based on the assumption that a deterministic relationship
with the explanatory variable does exist and that the random elements at different times have
zero mean and are independent of one another. The random element can be thought of as
‘measurement error’.

The model

The HadCRUT4 time series values were fitted with a straight line by the OLS method of
linear regression, i.e. the model

ye=ao+ait+& ()

was fitted to the data and is shown as the straight line in Figure 1(a).
There is also the appearance of a ‘multi-decadal oscillation’ present so a regression model
of the form

Ve = ap + ait + a, cos(wr) + as sin(wt) + &, (3)

was also fitted. The angular frequency, ®, was chosen by trial and error and corresponded to
a period of 70 years. The estimates ao, a;, a» and a; of the model parameters ay, a;, ay and a3
are shown in Table 1.

Standard error, t-value, p-value and 95% confidence intervals are shown for each.

The fitted function (dashed curve) described by (2) is shown superimposed on the data in
Figure 1(a). The linear trend in temperature, if it is real, is given by coefficient estimate, d,,
i.e. half a degree Celsius per century.

Testing the fit of the deterministic model

The fitting of a function by OLS regression requires that the sequence of residuals {&,} in (2)
or {5;} in (3) be unselfcorrelated. Clearly that is not the case for (2) where a sinusoidal
function or ‘multi-decadal oscillation’ would remain after removal of the linear trend. For
this reason, a sinusoid of arbitrary phase was included in the model of equation (3).

The sequence of residuals, {é;}, is shown in Figure 1(b) and its autocorrelation function
(ACF) in Figure 1(c). Even to the naked eye, there appears to be a systematic positive trend
in the ACF out to Lag 30. There are two statistical tests, which can be used to determine
whether the non-zero values of the ACF at non-zero lags are significant or just due to
chance. These are the Breusch-Godfrey test’® and the Ljung-Box test.” The results obtained
when these tests were applied to the fitting of equation (3) to the HadCRUT4 data are shown
in Table 2.

The probabilities listed in Table 2 are so small that we can reject the null hypothesis that
the non-zero ACF values are purely random and that equation (3) is a good fit to the data. It
can be rejected at a very high level of significance.
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Figure |. The deterministic method: (a) The HadCRUT time series. The straight solid line shows the

linear trend of temperature vs. time. The dashed line shows the multiple regression fit of a linear trend

plus a sinusoid. (b) Residuals from the time series of the linear trend plus sinusoid. (c) The autocorrel-

ation function of the residuals, ¢.

Table I. Coefficient estimates for the deterministic model of equation (3).

Value Std err t p >t 95.0% Conf. int.
do —0.0149 0.010 —1.508 0.134 —0.035, 0.005
a 0.0050 0.000 24.394 0.000 0.005, 0.005
ay 0.1210 0.014 8.841 0.000 0.094, 0.148
as 0.0791 0.014 5.569 0.000 0.051, 0.107

Standard error, t-value, p-value and 95% confidence intervals are shown for each.

The stochastic model

A stochastic model is based in the assumption that the value at any given time is determin-
istically related to the value or values at p previous times plus an additional random element.
When the random elements are independently distributed the model is known as an ‘auto-
regressive’ (AR) model of order p.
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Table 2. Testing the residuals of regression model of equation (3) for self-correlation.

Test Statistic At lag Probability
Breusch-Godfrey Min 52.023 I 5487 x 1073
Breusch-Godfrey Max 73.120 36 2498 x 107*
Ljung—Box Min 92.665 3 0

Ljung—Box Max 232.052 39 0

Minimum and maximum values of the Breusch-Godfrey and Ljung—Box test statistics and their corresponding probabilities
for a maximum lag of 40.

The random element may itself be a linear function of ¢ independent random variables
each with zero mean in which case the model is said to have a ‘moving average’ (MA)
component of order g. Combining the two gives an autoregressive moving average model
of order (p, g), an ARMA(p, ¢) model.

The random components are not regarded as measurement errors but as properties inher-
ent in the system itself.

The model

An ARMA(1,2) model was fitted to the HadCRUT4 time series using the Python statistical
package: statsmodels.tsa.arima-model. ARMA. The package’s css-mle option was selected
whereby the conditional sum of squares likelihood was maximized and its values used as
starting values for the computation of the exact likelihood via a Kalman filter.

The fitted model was thus

Vvi=aiy1+ e +bie1 +be o+ 4)

where «a;, by, b, and ¢ were parameters to be fitted and the {¢,} were independent, identically
distributed random variables with zero mean. The orders, p=1 and ¢ =2, were found by
trial and error, i.e. as the smallest values which resulted in unselfcorrelated residuals.

Note that the parameter ¢ is similar to the coefficient ¢; in (2) and (3). Setting a; =1 and
the other coefficients in (4) to zero for the moment, gives

Vi =Yin+nc ()

so that y, becomes a deterministic linear function of the elapsed time, nAt¢. For this reason, ¢
is known as the ‘drift term’. It is a deterministic element in an otherwise stochastic model.

The estimates a;,b;,b, and ¢ of the model parameters ay,b;,b, and ¢ are shown in
Table 3.

The most important feature of Table 3 is the small value and large confidence interval of
the drift term estimate, ¢. It is not significantly different from zero. Unlike the deterministic
model, stochastic modelling indicates that there is no significant drift in the HadCRUT4
time series of global average temperature.

Also of interest is the autoregressive coefficient, a;, which is very close to one. This is
important because, were the population value, a;, to be equal to one then the time series
would be a true random walk and so non-stationary. This issue is discussed further below.
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Table 3. Coefficient estimates for the stochastic model of equation (4).

Coef. Std. err. z p>|z| 95% Conf. int.
a 0.9955 0.006 176.629 0.000 0.984, 1.007
by —0.4068 0.074 —5.490 0.000 —0.552, —0.262
b, —0.2276 0.067 -3.379 0.001 —0.360, —0.096
c 0.0736 0.351 0.210 0.834 —0.615, 0.762

Standard error, z-value, p-value and confidence limits are shown for each.
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Figure 2. The stochastic method: (a) The HadCRUT time series. (b) Residuals from fitting an
ARMA(1,2) model, (c) The autocorrelation function of the residuals, ¢.

Testing the fit of the stochastic model

The sequence of residuals is shown in Figure 2(b) and its autocorrelation function in
Figure 2(c). The ACF values at non-zero lags appear to be randomly distributed on either
side of zero. As before the Breusch—Godfrey test and Ljung—Box tests were used to see if the
null hypothesis that the residual are unselfcorrelated can be rejected. The results are shown
in Table 4. None of the probabilities listed in Table 4 lie below the critical value of 0.05 and
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Table 4. Testing the residuals of the ARMA(I,2) model for self-correlation.

Test Statistic At lag Probability
Breusch—Godfrey Min I.165 | 0.28
Breusch—Godfrey Max 24.033 32 0.84
Ljung—Box Min 3.093 3 0.079
Ljung—Box Max 39.843 39 0.345

Minimum and maximum values of the Breusch-Godfrey and Ljung—Box test statistics and their corresponding probabilities
for a maximum lag of 40.

so there is no reason to reject the null hypothesis that the non-zero value of the ACF are due
entirely to chance. The ARMA(1,2) model is a very good fit to the HadCRUT4 time series.

The frequency domain

Whereas a deterministic model such as (3) can be displayed in the time domain, as in
Figure 1(a), it is usually more useful to display stochastic models in the frequency domain
as variance density spectra. The ARMA parameters allow the population variance spec-
tral density, Sy, of the time series to be estimated as a continuous function of the frequency,
e.g. for the ARMAC(1,2) process discussed here:

2

. 1 + bz + bz?
e ©)
—daz
where
z = exp(2mifAt) (7)

At is the sampling interval and o2 is the variance of the residuals.

The HadCRUT4 time series

Figure 3 shows the ARMA(1,2) spectral estimate of the HadCRUT4 time series plotted
using logarithmic scales (thick line). Also shown is the periodogram of the sample (thin line).

As a consequence of the above-discussed whiteness tests confirming the absence of self-
correlation of the residuals, this spectral estimate is optimal. There can be no peak, trough or
trend in the spectrum other than those depicted in Figure 2, because this would require
further poles and/or zeros in the z-plane, which are not included in the ARMA model. Such
extra poles or zeros, if unaccounted for, would inevitably lead to self-correlation of the
residuals, which would then have failed the Ljung—Box and Breusch—Godfrey tests.

For a; =1, there is a singularity in Syin (6) at zero frequency. When a; # 1, the spectrum
at low frequencies is flattened. In electronic terms, the spectrum resembles that of low-pass
filtered white noise with a 3 dB cutoff given by

1 —a

2w At ®)

f édB =
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Figure 3. The variance density spectral estimate, §f, vs. frequency, f of the ARMA(I,2) model fitted
to the HadCRUT time series (thick line). The thin line shows the periodogram of the time series. The
vertical-dashed line shows f34s, the 3 dB cut-off frequency.

where «@; is the estimate of the autoregressive coefficient listed in Table 3 and At is the
sampling frequency. It is depicted as the vertical-dashed line in Figure 3 at f3,3 = .00071
corresponding to a period, T34 = 1400 years.

The a; = 1 case is extremely important statistically. The singularity means that the variance
density at the origin is not defined. In the time domain, we would have a true random walk for
which variance is proportional to elapsed time and the time series cannot be assumed to be
stationary. There is a statistical test, the Augmented Dickey—Fuller (ADF) test, which tests the
null hypothesis of whether a unit root is present in a time series sample. The HadCRUT4 time
series in question yielded an ADF statistic of —0.3011 with a p-value of 0.576. Hence, the null
hypothesis cannot be rejected. It is possible that there is a unit pole, i.e. that a; = 1.

Of course, this does not imply that a unit pole exists, only that its existence cannot be
rejected. In the field of Econometrics, such a result would sound an alarm and the researcher
would be tempted to abandon the ARMA model for an ARIMA model appropriate to a
non-stationary time series.

However, examination of Figure 3 shows that the 3 dB cutoff frequency is much smaller
than the smallest frequency in the periodogram, i.e. the cutoff period of 1400 years is much
longer than the sample length of 166 years. By using the ADF test to determine whether the
time series is non-stationary, we are attempting to predict behaviour of the spectrum for
periods which are an order of magnitude greater than the sample length. Common sense
would suggest that this is unreliable.

The GISP2 time series

Casting further light on this issue requires a much longer time series. Although the length of
contemporary time series was limited by the short period during which accurate temperature
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Figure 4. (a) Time series of the GISP2 Central Greenland ice-core proxy temperature anomaly for the
last 10,000 years. (b) The population spectrum of the fitted ARMA(1,3) process (thick line) and periodo-
gram (thin line) of this time series shown in (a). The vertical-dashed line shows f34s, the 3 dB cut-off
frequency.

measurements were made, subsidiary data are available in the form of proxy temperature
time series derived from stable isotope ratios of atmospheric gases trapped in ice-cores.
There is a trade-off between length of such proxy records and their time resolution.
At longer time scales, events such as ice-age terminations suggest an underlying quasi-
deterministic process which depends on astronomical quantities'® and which cannot be
assumed to be stationary. It is therefore desirable to use data from the relatively recent
past, the Holocene epoch of the last 10,000 years following the last Ice Age Termination.

The GISP2 proxy-temperature time series fom Central Greenland ice cores was such a
data set with a time resolution of 50 years over the last 10,000 years. A time series of equally
spaced values was constructed from the GISP2 data by averaging the value in each 50-year
interval. It is displayed in Figure 4(a).

An ARMAC(1,3) process was fitted to this time series and its spectral estimate and period-
ogram are shown in Figure 4(b). The various goodness-of-fit statistics are shown in Table 5.

A striking difference from the HadCRUT spectrum is the existence of a strong trough
with a minimum at .0045 year~' (period =223 years). While spectral peaks display the
presence of deterministic cycles or resonant phenomena, a trough such as this one implies
a convoluting or averaging process. A possible explanation lies in the diffusion of
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Table 5. Statistics of the GISP2 time series.

Statistic Value p-value
Drift term —0.080 0.96
ADF (no constant) —3.59 0.0003
Ljung-Box Q (min) 3.318 0.037
Breusch—Godfrey 228 0.064

atmospheric gases between layers during the firn stage of ice formation, an unavoidable
artefact of the ice core proxy-temperature methodology.

A summary of the statistics is shown in Table 5. Once again the drift term is not signifi-
cant, but this time, the ADF test indicates that we can dismiss the null-hypothesis that the
time series has a unit pole with a high degree of confidence. This time the low pass cut-off is
at f3qp = .000847 year ', i.e. a period of 1180 years, well within the 10,000 year time span of
the data and remarkably close to the 1400 year cut-off of the HadCRUT4 data.

This evidence from proxy data suggests that the contemporary HadCRUT4 time-series
may well be stationary and not a true random-walk.

Demonstrating false correlation with a synthetic time series

If the HadCRUT4 time series of global average temperature is not a true random walk, it is
important to determine whether Nelson and Kang’s conclusions still applies: is a false cor-
relation with time possible when the series is stationary? For that purpose, a number of
simulations were run for time series generated artificially using the parameters listed in Table
3 and with the drift term, ¢, set to zero. Each synthetic time series was 166-long and
generated by the process:

yl:&]yl—l +€l+[;161—1 +b,\26[—2a 12374""5a168 (9)

where y, was set to zero and the {¢;} where independent normally distributed random
numbers.One million time series samples were generated in this way.

For each sample, r, the correlation coefficient of y, on ¢ was calculated and the number of
values in each percentage binned to give the frequency distribution, f. The outcome is plotted
in Figure 5. The distribution is bi-modal with peaks near £0.70 demonstrating that not only
it is possible to obtain a numerically large correlation coefficient of value on time but also it
is likely. This is true, not only for random walk data described by Nelson and Kang, it is also
true for the stationary ARMA(1,2) time series described here.

The reason for this behaviour is demonstrated graphically in Figure 6. A single 10,000-
long time series was also generated using equation (9) and is shown in Figure 6(a). Thus,
Figures 4(a) and 6(a) are directly comparable. The former looks smoother because of the
spectral trough at .0045 year™! attributable to firn processes. Figure 6(a) shows the time
series we would expect to see if we had 10,000 years of global average temperature data
rather than only 166 years.

The two dashed vertical lines in Figure 6(a) designate an arbitrarily located 166-year long
interval. The detail of the interval, expanded in time, is displayed in Figure 6(b). It exhibits
an upward ‘trend’ remarkably similar to that of the HadCRUT4 data. There are many other



12 Energy & Environment 0(0)

0.7

Figure 5. The frequency, f, of r, the sample correlation coefficient holding between value and time for
one million 166-long samples generated by equation (9).
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Figure 6. (a) A 10,000 long-time series of ‘annual temperatures’ generated artificially using the coeffi-
cients of the ARMA(1,2) model of Figure 2 and filtered and decimated in the same manner as the GISP2
data shown in Figure 4(a). (b) A 166-long segment showing the detail between the vertical lines in (a).

166-long intervals in Figure 6(a), which would have given a similar result and many others
which would have shown an apparent downward trend.

It is clear from Figure 6 that such spurious upward and downward trends occur in a short
sample of a time series when there is a large concentration of variance at periods longer than
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sample length, i.e. when the time series has a ‘red’ spectrum. This is still true even when the
spectrum is flattened at low frequencies providing the 3 dB cut-off period is much longer
than the sample length, i.e. when

T4 > NAt (10)

where N is the sample length and At is the sampling period. It is not necessary that the time
series be a true random-walk and be non-stationary as is commonly believed.

Note also that a ‘multi-decadal oscillation” appears in Figure 6(b). It is as spurious as the
rising trend since no oscillatory behaviour is implied by the generating equation (10).

Conclusion

The process which gives rise to a red spectrum flattened below a cut-off frequency is widely
found in engineering and in nature. In electronics, it occurs when electronic noise is fed
through an RC integrator as with the bass control of an audio amplifier. In the natural
world, it occurs when energy is randomly stored. It is a particular sort of Markov process
termed a ‘centrally biased random walk’ and known colloquially as ‘red noise’. Using the
techniques described above other ‘oscillations’ such as the Pacific Decade Oscillation can
also be shown to be centrally biased random walks specified by a small number of ARMA
parameters. This is not surprising since the PDO is derived from a large subset of the global
average temperature data used here.

The small increase in global average temperature observed over the last 166 years is the
random variation of a centrally biased random walk. It is a red noise fluctuation. It is not
significant, it is not a trend and it is not likely to continue.
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